Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338891

ABSTRACT

The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.


Subject(s)
Autonomic Nervous System Diseases , Hypertension , Pre-Eclampsia , Prenatal Exposure Delayed Effects , Renal Insufficiency, Chronic , Pregnancy , Humans , Female , Rats , Animals , Male , Citrulline/pharmacology , Citrulline/therapeutic use , Rats, Sprague-Dawley , Hypertension/etiology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/complications , Adenine/adverse effects , Prenatal Exposure Delayed Effects/chemically induced
2.
PLoS One ; 19(2): e0298334, 2024.
Article in English | MEDLINE | ID: mdl-38306371

ABSTRACT

INTRODUCTION: Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD: Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS: After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION: Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.


Subject(s)
Antioxidants , Reperfusion Injury , Rats , Male , Animals , Antioxidants/metabolism , Vitamins/pharmacology , Glutamine/pharmacology , Glutamine/metabolism , Citrulline/pharmacology , Citrulline/metabolism , Rats, Wistar , Oxidative Stress , Reperfusion Injury/metabolism , Cytokines/metabolism , Reperfusion , Ischemia/complications , Inflammation/drug therapy , Inflammation/complications , DNA/metabolism , Dietary Supplements
3.
Br J Nutr ; 131(3): 474-481, 2024 02 14.
Article in English | MEDLINE | ID: mdl-37664994

ABSTRACT

Postmenopausal women have augmented pressure wave responses to low-intensity isometric handgrip exercise (IHG) due to an overactive metaboreflex (postexercise muscle ischaemia, PEMI), contributing to increased aortic systolic blood pressure (SBP). Menopause-associated endothelial dysfunction via arginine (ARG) and nitric oxide deficiency may contribute to exaggerated exercise SBP responses. L-Citrulline supplementation (CIT) is an ARG precursor that decreases SBP, pulse pressure (PP) and pressure wave responses to cold exposure in older adults. We investigated the effects of CIT on aortic SBP, PP, and pressure of forward (Pf) and backward (Pb) waves during IHG and PEMI in twenty-two postmenopausal women. Participants were randomised to CIT (10 g/d) or placebo (PL) for 4 weeks. Aortic haemodynamics were assessed via applanation tonometry at rest, 2 min of IHG at 30 % of maximal strength, and 3 min of PEMI. Responses were analysed as change (Δ) from rest to IHG and PEMI at 0 and 4 weeks. CIT attenuated ΔSBP (−9 ± 2 v. −1 ± 1 mmHg, P = 0·006), ΔPP (−5 ± 2 v. 0 ± 1 mmHg, P = 0·03), ΔPf (−6 ± 2 v. −1 ± 1 mmHg, P = 0·01) and ΔPb (−3 ± 1 v. 0 ± 1 mmHg, P = 0·02) responses to PEMI v. PL. The ΔPP during PEMI was correlated with ΔPf (r = 0·743, P < 0·001) and ΔPb (r = 0·724, P < 0·001). Citrulline supplementation attenuates the increase in aortic pulsatile load induced by muscle metaboreflex activation via reductions in forward and backward pressure wave amplitudes in postmenopausal women.


Subject(s)
Arterial Pressure , Citrulline , Humans , Female , Aged , Arterial Pressure/physiology , Citrulline/pharmacology , Postmenopause , Hand Strength , Muscle, Skeletal , Blood Pressure , Dietary Supplements
4.
Toxicol Appl Pharmacol ; 478: 116708, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37778480

ABSTRACT

Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 µg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.


Subject(s)
Pentachlorophenol , Animals , Pentachlorophenol/pharmacology , Pentachlorophenol/toxicity , Zebrafish/metabolism , Citrulline/metabolism , Citrulline/pharmacology , Larva , Arginine/metabolism , Arginine/pharmacology , Ornithine/metabolism , Ornithine/pharmacology , Proline/metabolism , Proline/pharmacology
5.
Crit Care ; 27(1): 381, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37784110

ABSTRACT

BACKGROUND: Restoring plasma arginine levels through enteral administration of L-citrulline in critically ill patients may improve outcomes. We aimed to evaluate whether enteral L-citrulline administration reduced organ dysfunction based on the Sequential Organ Failure Assessment (SOFA) score and affected selected immune parameters in mechanically ventilated medical intensive care unit (ICU) patients. METHODS: A randomized, double-blind, multicenter clinical trial of enteral administration of L-citrulline versus placebo for critically ill adult patients under invasive mechanical ventilation without sepsis or septic shock was conducted in four ICUs in France between September 2016 and February 2019. Patients were randomly assigned to receive enteral L-citrulline (5 g) every 12 h for 5 days or isonitrogenous, isocaloric placebo. The primary outcome was the SOFA score on day 7. Secondary outcomes included SOFA score improvement (defined as a decrease in total SOFA score by 2 points or more between day 1 and day 7), secondary infection acquisition, ICU length of stay, plasma amino acid levels, and immune biomarkers on day 3 and day 7 (HLA-DR expression on monocytes and interleukin-6). RESULTS: Of 120 randomized patients (mean age, 60 ± 17 years; 44 [36.7%] women; ICU stay 10 days [IQR, 7-16]; incidence of secondary infections 25 patients (20.8%)), 60 were allocated to L-citrulline and 60 were allocated to placebo. Overall, there was no significant difference in organ dysfunction as assessed by the SOFA score on day 7 after enrollment (4 [IQR, 2-6] in the L-citrulline group vs. 4 [IQR, 2-7] in the placebo group; Mann‒Whitney U test, p = 0.9). Plasma arginine was significantly increased on day 3 in the treatment group, while immune parameters remained unaffected. CONCLUSION: Among mechanically ventilated ICU patients without sepsis or septic shock, enteral L-citrulline administration did not result in a significant difference in SOFA score on day 7 compared to placebo. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02864017 (date of registration: 11 August 2016).


Subject(s)
Sepsis , Shock, Septic , Adult , Humans , Female , Middle Aged , Aged , Male , Organ Dysfunction Scores , Shock, Septic/complications , Citrulline/pharmacology , Citrulline/therapeutic use , Multiple Organ Failure/etiology , Critical Illness/therapy , Respiration, Artificial/adverse effects , Sepsis/drug therapy , Sepsis/complications , Intensive Care Units , Dietary Supplements , Arginine/therapeutic use
6.
Adv Exp Med Biol ; 1428: 127-148, 2023.
Article in English | MEDLINE | ID: mdl-37466772

ABSTRACT

In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.


Subject(s)
Pre-Eclampsia , Female , Pregnancy , Humans , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Placenta/metabolism , Citrulline/therapeutic use , Citrulline/metabolism , Citrulline/pharmacology , Arginine/metabolism , Vascular Endothelial Growth Factor A/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Dietary Supplements , Vascular Endothelial Growth Factor Receptor-1/metabolism
7.
J Diet Suppl ; 20(4): 531-542, 2023.
Article in English | MEDLINE | ID: mdl-37293750

ABSTRACT

Grape seed extract (GSE) or L-citrulline supplement has been known to increase nitric oxide (NO) bioavailability and enhance endothelial-mediated vasodilation. Accordingly, to examine the additive benefits of combination of the two supplementations on hemodynamic responses to dynamic exercise, young, healthy males were recruited for this study. Effects of 7 days of 1) GSE + L-citrulline, 2) GSE, 3) L-citrulline, and 4) placebo supplementation on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), cardiac output, total vascular conductance (TVC), and oxygen (O2) consumption were examined at rest and during cycling exercise. Compared with placebo, GSE, L-citrulline, and combined supplementations did not reduce SBP, DBP, and MAP, while cardiac output (placebo; 23.6 ± 1.3 L/min, GSE; 25.7 ± 1.1 L/min; L-citrulline, 25.2 ± 1.2 L/min; GSE + L-citrulline; 25.3 ± 0.9 L/min) and TVC (placebo; 234.7 ± 11.3 ml/min/mmHg, GSE; 258.3 ± 10.6 ml/min/mmHg; L-citrulline, 255.2 ± 10.6 ml/min/mmHg; GSE + L-citrulline; 260.4 ± 8.9 ml/min/mmHg) were increased at only the 80% workload (p < 0.05). Compared with placebo and L-citrulline, GSE and combined supplementations had a reduction in VO2 across workloads (p < 0.05). However, there was no additive benefits on these variables. We conclude that supplementation with GSE, L-citrulline, and combined supplementations increased cardiac output due partially to decreased vascular resistance. Our findings suggest that GSE may act as an ergogenic aid that can improve O2 delivery to exercising muscles.


Subject(s)
Grape Seed Extract , Male , Humans , Grape Seed Extract/pharmacology , Citrulline/pharmacology , Hemodynamics , Blood Pressure , Dietary Supplements
8.
Nutrients ; 15(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37299579

ABSTRACT

Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Vascular Stiffness , Humans , Citrulline/pharmacology , Risk Factors , Vasodilation , Heart Disease Risk Factors , Arginine/pharmacology , Endothelium, Vascular , Nitric Oxide/pharmacology
9.
Eur J Sport Sci ; 23(11): 2157-2169, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37161876

ABSTRACT

Physical activity and nutrition play important roles in preventing adverse health outcomes that accompany aging. It has been shown that high-intensity interval training (HIIT) combined with citrulline (CIT) supplementation can improve physical and functional capacities. The aim of this study was to evaluate serum metabolites following a 12-week HIIT combined or not with CIT in obese older adults, and to correlate the metabolic changes with clinico-biological parameters changes. Eighty-six obese older adults completed a 12-week HIIT program combined with a 10 g daily supplementation of either CIT or placebo (PLA) during a double-blinded randomized interventional trial. Only participants with blood samples at T0 (before the intervention) and/or T12 (after the intervention) were included in our sub-analysis (HIIT-PLA-T0: n = 44 and HIIT-PLA-T12: n = 28; HIIT-CIT-T0: n = 39 and HIIT-CIT-T12: n = 42). Serum samples were analyzed by different liquid or gas phase chromatography methods coupled to mass spectrometry. Among the identified metabolites, 44 changed significantly following the 12-week intervention (Time effect), and 10 of them were more affected when HIIT was combined with CIT (Time × Supp effect). Arginine increased significantly due to the 12-week intervention. Correlation analyses demonstrated that decreased triglyceride (TG) (16:1/18:1/16:0) and aspartic acid significantly correlated with a reduction of adiposity-related parameters (fat mass, leg lean mass, leptin, total triglycerides and low-density lipoprotein). Arginine, TG (16:1/18:1/16:0) and aspartic acid might constitute biomarkers of cardiometabolic health and adiposity. Further studies are needed to confirm these associations and understand the underlying mechanisms.Highlights A 12-week intervention involving high-intensity interval training (HIIT) with or without citrulline (CIT) supplementation induced adaptations in the serum metabolome of obese older adults through significant changes in 44 metabolites.Changes in 23 metabolites were observed when a CIT supplementation was administered along with a 12-week HIIT intervention.TG (16:1/18:1/16:0) correlated with several adiposity parameters including leptin, triglycerides, legs lean mass.Aspartic acid correlated with several adiposity parameters including leptin, LDL cholesterol as well as android, arms and trunk fat mass.


Subject(s)
High-Intensity Interval Training , Leptin , Humans , Aged , Citrulline/pharmacology , High-Intensity Interval Training/methods , Aspartic Acid , Obesity/therapy , Dietary Supplements , Arginine , Triglycerides , Polyesters
10.
J Int Soc Sports Nutr ; 20(1): 2209056, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37155582

ABSTRACT

BACKGROUND: Citrulline is a popular dietary supplement, primarily thought to exert ergogenic effects on exercise performance through the enhancement of nitric oxide (NO) synthesis and ammonia buffering. However, recent findings surrounding citrulline's effect on endurance performance have been inconsistent. A systematic review and meta-analysis of the relevant literature have yet to be undertaken. AIM: To determine if acute ingestion of citrulline has an ergogenic effect on endurance performance in young healthy adults. METHODS: A systematic search of three databases was undertaken to find peer-reviewed randomized controlled trials (RCTs) published in English investigating the effects of citrulline supplementation on endurance performance in young healthy adults. Two independent investigators completed a three-phased screening procedure against pre-determined eligibility criteria. Included studies evaluated loading or bolus dosage regimes of citrulline in participants aged 18 or over that were at least recreationally active. Outcome measures focused on time-to-completion (TTC) or time-to-exhaustion (TTE) in continuous submaximal intensity exercise. Cochrane's Risk of Bias 2 (RoB 2) tool was used to assess the risk of bias in individual studies. Meta-analysis was conducted using a fixed-effects model to pool the weighted estimate of standardized mean differences (SMD) across studies. A chi-squared test assessed heterogeneity between studies. This review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Nine studies (n = 158 participants) met the eligibility criteria; five reported TTE outcomes (I2 = 0%, χ2 = 0.37, df = 4, P = 0.99) and four reported TTC outcomes (I2 = 0%, χ2 = 0.46, df = 3, P = 0.93), both with a low between-study heterogeneity. The results of the meta-analyses showed no significant difference in the endurance performance measures, TTE (pooled SMD = 0.03 [-0.27, 0.33]) and TTC (pooled SMD = -0.07 [-0.50, 0.15]), after acute ingestion of citrulline supplementation or a control in young healthy adults. DISCUSSION: The current evidence suggests no significant benefit of citrulline supplementation for endurance performance. However, the small evidence base requires further research to fully evaluate this topic. Recommendations include a focus on female populations; higher continuous doses of citrulline over seven days; and TTC outcome measures over longer distances to simulate competition.


Subject(s)
Citrulline , Exercise , Female , Humans , Adult , Citrulline/pharmacology , Dietary Supplements , Nutritional Status
11.
J Int Soc Sports Nutr ; 20(1): 2214112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37229544

ABSTRACT

BACKGROUND: Nutrition plays a key role in training and athletic performance and dietary supplements can make a small, but potentially valuable, contribution to achieving peak athletic performance. This study is the first to investigate the effects of supplementation from the combination of BCAAs, L-citrulline, and A-GPC on exercise performance. METHODS: In this randomized, double-blind, crossover study 30 male trained cyclists (age: 43.7 ± 8.5 years) completed a 20 km cycling time trial (TT) test and a high intensity endurance cycling (HIEC) test following a 7-day supplementation period with either a supplement containing 8 g BCAAs, 6 g L-citrulline, and 300 mg A-GPC or a placebo (15 g maltodextrin). For each trial, mean values for time to completion, peak and average power output, OMNI rating of perceived exertion, and visual analogue scale (VAS) responses on perceived exertion were computed for the 20 km TT test. Mean values for time to fatigue and VAS responses on perceived exertion were computed for the HIEC test. Procedures for dietary intake and exercise patterns were implemented to achieve consistency throughout the study period. RESULTS: There was a significant increase (p = .003) in peak power in the 20 km TT (354.27 ± 87.88 and 321.67 ± 63.65, for supplement and placebo trials, respectively) and a significant increase (p = .001) in time to fatigue in the HIEC test (0:19:49 ± 0:11:13 min and 0:14:33 ± 0:09:59 min, for supplement and placebo trials, respectively) with the test supplement compared to the placebo. With the test supplement, there was an average increase in TT peak power of 11% and an average increase in time to fatigue of 36.2% in the HIEC test compared to the placebo. There was no significant improvement in time to completion, average power, OMNI rating of perceived exertion, or VAS responses on perceived exertion in the TT test and no significant improvement in VAS measures of perceived exertion in the HIEC test. CONCLUSIONS: The combination of BCAAs, L-citrulline, and A-GPC used in this study improves cycling performance and may be useful for individuals seeking to improve athletic performance, particularly in disciplines requiring lower body muscular strength and endurance.


Subject(s)
Athletic Performance , Citrulline , Humans , Male , Adult , Middle Aged , Cross-Over Studies , Citrulline/pharmacology , Glycerylphosphorylcholine , Amino Acids, Branched-Chain , Athletic Performance/physiology , Dietary Supplements , Fatigue , Double-Blind Method , Bicycling/physiology
12.
J Int Soc Sports Nutr ; 20(1): 2206386, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37125500

ABSTRACT

BACKGROUND: Citrulline may amplify the effects of L-arginine and nitric oxide concentration, which may augment vasodilation and blood flow, thereby enhancing aerobic exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate effects of L-citrulline + Glutathione on aerobic exercise performance and blood flow in well-trained men. METHODS: Twenty-five males (Mean ± SD; Age: 22.2 ± 2.4 yrs; Height: 177.0 ± 4.8 cm; Weight: 75.3 ± 6.9 kg) were randomly assigned to the L-citrulline + Glutathione (Setria Performance Blend: SPB; L-citrulline [2 g] + glutathione [200 mg], 6 capsules) or placebo (PL; 3.1 g cellulose, 6 capsules) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV) and returned after eight days of ingesting either PL or SPB. Three timed treadmill runs to exhaustion (TTE) were performed at 90%, 100%, and 110% PV. Brachial artery blood flow and vessel diameter were assessed using ultrasound at 1-hr prior to exercise (1hrPrEX), after each exercise bout, immediately post-exercise (immediate PEX), and 30 minutes post exercise (30minPEX) at visits 2 and 4. Blood analytes were assessed via venous blood draws at visit 1, visit 3, and 1hrPEX, immediate PEX, and 30minPEX at visits 2 and 4. After a 14-day washout, participants repeated the same procedures, ingesting the opposite treatment. Separate repeated measures ANOVAs were performed for TTE, vessel diameter, blood flow, and blood analytes. RESULTS: Blood flow was significantly augmented 30minPEX (p = 0.04) with SPB in comparison with PL. L-citrulline and L-arginine plasma concentrations were significantly elevated immediately PEX (p = 0.001) and 30-minPEX (p = 0.001) following SPB in comparison to PL. CONCLUSION: Acute ingestion of SPB after eight days may enhance blood flow, L-citrulline, and L-arginine plasma concentrations after high-intensity exercise, which may enhance performance. CLINICAL TRIAL REGISTRATION: [https://clinicaltrials.gov/ct2/show/nct04090138], identifier [NCT04090138].


Subject(s)
Citrulline , Dietary Supplements , Male , Humans , Young Adult , Adult , Citrulline/pharmacology , Cross-Over Studies , Capsules , Glutathione , Double-Blind Method , Arginine/pharmacology
13.
Nutrients ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049398

ABSTRACT

Postmenopausal women (PMW) may experience endothelial dysfunction associated with arginine (ARG) deficiency relative to asymmetric dimethylarginine (ADMA) caused by oxidative stress. Endothelial dysfunction contributes to increased blood pressure (BP) responsiveness to sympathoexcitation induced by the cold pressor test (CPT). We investigated the effects of citrulline alone (CIT) and combined with the antioxidant glutathione (CIT+GSH) on vascular function. Forty-four healthy PMW were randomized to CIT (6 g), CIT+GSH (2 g + 200 mg: Setria®) or placebo (PL) for 4 weeks. Brachial artery flow-mediated dilation (FMD), aortic stiffness (pulse wave velocity, PWV), brachial and aortic BP reactivity to CPT, and serum fasting blood glucose (FBG), ARG, and ARG/ADMA ratio were measured. Baseline FBG was higher in CIT+GSH vs. PL. FMD increased after CIT+GSH vs. PL (p < 0.05). CIT and CIT+GSH increased ARG/ADMA (p < 0.05), but did not affect aortic PWV. CIT+GSH attenuated the brachial and aortic systolic BP and mean arterial pressure (MAP) responses to CPT vs. PL and CIT (p < 0.05). The improvements in FMD were related to baseline FMD (r = -0.39, p < 0.05) and aortic MAP response to CPT (r = -0.33, p < 0.05). This study showed that CIT+GSH improved FMD and attenuated systolic BP and MAP reactivity in PMW. Although CIT increased ARG/ADMA, it did not improve FMD in healthy PMW.


Subject(s)
Citrulline , Vascular Diseases , Humans , Female , Blood Pressure , Citrulline/pharmacology , Pulse Wave Analysis , Postmenopause , Glutathione , Dietary Supplements , Arginine , Endothelium, Vascular
14.
Nutrients ; 15(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37111169

ABSTRACT

In sports nutrition, nitric oxide (NO•) precursors such as L-citrulline are widely used to enhance NO• bioavailability, which is considered an ergogenic aid. Our study aimed to examine the effect of short-term L-citrulline supplementation on respiratory muscles' performance, fatigue, and oxygenation in older adults. Fourteen healthy older males took 6 g of L-citrulline or a placebo for seven days in a double-blind crossover design. Pulmonary function via spirometry (i.e., forced expired volume in 1 s (FEV1), forced vital capacity (FVC), and their ratio)), fractional exhaled nitric oxide (NO•), maximal inspiratory pressure (MIP), rate of perceived exertion, and sternocleidomastoid muscle oxygenation (i.e., oxyhemoglobin (Δ[O2Hb]) and de-oxyhemoglobin (Δ[HHb]), total hemoglobin concentration (Δ[tHb]), and tissue saturation index (TSI%)) were evaluated at baseline, after seven days of L-citrulline supplementation, and after incremental resistive breathing to task failure of the respiratory muscles. The exhaled NO• value was only significantly increased after the supplementation (26% p < 0.001) in the L-citrulline condition. Pulmonary function, MIP, rate of perceived exertion, and sternocleidomastoid muscle oxygenation were not affected by the L-citrulline supplementation. In the present study, although short-term L-citrulline supplementation increased exhaled NO•, no ergogenic aids were found on the examined parameters at rest and after resistive breathing to task failure in older adults.


Subject(s)
Citrulline , Oxyhemoglobins , Aged , Humans , Male , Citrulline/pharmacology , Dietary Supplements , Respiratory Muscles , Cross-Over Studies
15.
Nutrients ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111214

ABSTRACT

BACKGROUND: The repercussions on oxidative and inflammatory stress markers under the effects of arginine and citrulline in response to exercise are not fully reached. We completed a systematic review to investigate the effects of L-Citrulline or L-Arginine on oxidative stress and inflammatory biomarkers following exercise. EMBASE, MEDLINE (PubMed), Cochrane Library, CINAHL, LILACS, and Web of Science databases were used to record the trials. This study includes randomized controlled trials (RCTs) and non-RCTs with subjects over 18 years old. Those under the intervention protocol consumed L-Citrulline or L-Arginine, and the controls ingested placebo. We recognized 1080 studies, but only 7 were included (7 studies in meta-analysis). We observed no difference between pre- vs. post-exercise for oxidative stress (subtotal = -0.21 [CI: -0.56, 0.14], p = 0.24, and heterogeneity = 0%. In the sub-group "L-Arginine" we found a subtotal = -0.29 [-0.71, 0.12], p = 0.16, and heterogeneity = 0%. For the "L-Citrulline" subgroup we observed a subtotal = 0.00 [-0.67, 0.67], p = 1.00, and heterogeneity was not applicable. No differences were observed between groups (p = 0.47), and I² = 0%) or in antioxidant activity (subtotal = -0.28 [-1.65, 1.08], p = 0.68, and heterogeneity = 0%). In the "L-Arginine" sub-group, we found a subtotal = -3.90 [-14.18, 6.38], p = 0.46, and heterogeneity was not applicable. For the "L-Citrulline" subgroup, we reported a subtotal = -0.22 [-1.60, 1.16], p = 0.75, and heterogeneity was not applicable. No differences were observed between groups (p = 0.49), and I² = 0%), inflammatory markers (subtotal = 8.38 [-0.02, 16.78], p = 0.05, and heterogeneity = 93%. Tests for subgroup differences were not applicable, and anti-inflammatory markers (subtotal = -0.38 [-1.15, 0.39], p = 0.34 and heterogeneity = 15%; testing for subgroup differences was not applicable). In conclusion, our systematic review and meta-analysis found that L-Citrulline and L-Arginine did not influence inflammatory biomarkers and oxidative stress after exercise.


Subject(s)
Citrulline , Dietary Supplements , Humans , Adolescent , Citrulline/pharmacology , Oxidative Stress , Biomarkers , Arginine/pharmacology , Exercise/physiology , Randomized Controlled Trials as Topic
16.
Nutrients ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904267

ABSTRACT

The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.


Subject(s)
Athletic Performance , Citrulline , Humans , Aged , Citrulline/pharmacology , Arginine/pharmacology , Dietary Supplements
17.
Nutrients ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771366

ABSTRACT

Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.


Subject(s)
Citrulline , Nitric Oxide , Humans , Nitric Oxide/metabolism , Citrulline/pharmacology , Citrulline/metabolism , Dietary Supplements , Arginine/pharmacology , Arginine/metabolism , Nitric Oxide Synthase/metabolism , Muscle, Skeletal/metabolism , Nitrates/pharmacology
18.
Acta Physiol (Oxf) ; 237(3): e13937, 2023 03.
Article in English | MEDLINE | ID: mdl-36645144

ABSTRACT

The prevalence of type 2 diabetes (T2D) is increasing worldwide. Decreased nitric oxide (NO) bioavailability is involved in the pathophysiology of T2D and its complications. L-citrulline (Cit), a precursor of NO production, has been suggested as a novel therapeutic agent for T2D. Available data from human and animal studies indicate that Cit supplementation in T2D increases circulating levels of Cit and L-arginine while decreasing circulating glucose and free fatty acids and improving dyslipidemia. The underlying mechanisms for these beneficial effects of Cit include increased insulin secretion from the pancreatic ß cells, increased glucose uptake by the skeletal muscle, as well as increased lipolysis and ß-oxidation, and decreased glyceroneogenesis in the adipose tissue. Thus, Cit has antihyperglycemic, antidyslipidemic, and antioxidant effects and has the potential to be used as a new therapeutic agent in the management of T2D. This review summarizes available literature from human and animal studies to explore the effects of Cit on metabolic parameters in T2D. It also discusses the possible mechanisms underlying Cit-induced improved metabolic parameters in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Citrulline/metabolism , Citrulline/pharmacology , Citrulline/therapeutic use , Arginine , Muscle, Skeletal/metabolism , Hypoglycemic Agents/therapeutic use
19.
J Strength Cond Res ; 37(6): 1225-1230, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-34319940

ABSTRACT

ABSTRACT: Gills, JL, Spliker, B, Glenn, JM, Szymanski, D, Romer, B, Lu, H-C, and Gray, M. Acute citrulline-malate supplementation increases total work in short lower-body isokinetic tasks for recreationally active females during menstruation. J Strength Cond Res 37(6): 1225-1230, 2023-Citrulline-malate (CM) exhibits acute ergogenic benefits through nitric oxide production (NO) and augmentation of vasodilatory properties. Nitric oxide is upregulated by estrogen and may influence CM's ergogenic efficacy in women. Therefore, the objective of this study was to evaluate the acute effects of CM supplementation on lower-body isokinetic performance in recreationally active women. Nineteen women (23.5 ± 3.1 years; 164.8 ± 7.0 cm; 61.9 ± 27.4 kg; 28.8 ± 8.1% body fat) completed 2 randomized, double-blind, crossover trials consuming CM (8 g CM + 12 g dextrose) or placebo (12 g dextrose). For testing trials, subjects were in the menstruating portion of the follicular phase of their menstrual cycle. Subjects performed a 5-repetition isokinetic leg extension protocol (5RP) followed by a 50-repetition isokinetic leg extension protocol (50RP), 60 minutes after supplement consumption. Repeated measures analysis of variance analysis showed that CM significantly increased total work completed, relative total work, and total work during maximum repetition compared with placebo ( p < 0.05); but no significant performance differences existed between trials for peak torque production ( p = 0.14) for the 5RP. No significant differences were identified between trials for peak torque production ( p = 0.69 ) or total work ( p = 0.33) completed during the 50RP. CM increased total work completed during the 5RP, but provided no ergogenic benefit during the 50RP in recreationally active menstruating women. CM amplifies power-based resistance exercise performance in women during the follicular phase of the menstrual cycle, potentially because of depressed estrogen levels. Additional research is needed to identify timing efficacy of CM to increase sport performance during each phase of the menstrual cycle.


Subject(s)
Athletic Performance , Menstruation , Humans , Female , Citrulline/pharmacology , Malates/pharmacology , Nitric Oxide , Dietary Supplements , Double-Blind Method , Glucose/pharmacology , Muscle, Skeletal
20.
Nutrients ; 14(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36297080

ABSTRACT

Aging and menopause are associated with decreased nitric oxide bioavailability due to reduced L-arginine (L-ARG) levels contributing to endothelial dysfunction (ED). ED precedes arterial stiffness and hypertension development, a major risk factor for cardiovascular disease. This study investigated the effects of L-citrulline (L-CIT) on endothelial function, aortic stiffness, and resting brachial and aortic blood pressures (BP) in hypertensive postmenopausal women. Twenty-five postmenopausal women were randomized to 4 weeks of L-CIT (10 g) or placebo (PL). Serum L-ARG, brachial artery flow-mediated dilation (FMD), aortic stiffness (carotid-femoral pulse wave velocity, cfPWV), and resting brachial and aortic BP were assessed at 0 and 4 weeks. L-CIT supplementation increased L-ARG levels (Δ13 ± 2 vs. Δ−2 ± 2 µmol/L, p < 0.01) and FMD (Δ1.4 ± 2.0% vs. Δ−0.5 ± 1.7%, p = 0.03) compared to PL. Resting aortic diastolic BP (Δ−2 ± 4 vs. Δ2 ± 5 mmHg, p = 0.01) and mean arterial pressure (Δ−2 ± 4 vs. Δ2 ± 6 mmHg, p = 0.04) were significantly decreased after 4 weeks of L-CIT compared to PL. Although not statistically significant (p = 0.07), cfPWV decreased after L-CIT supplementation by ~0.66 m/s. These findings suggest that L-CIT supplementation improves endothelial function and aortic BP via increased L-ARG availability.


Subject(s)
Hypertension , Vascular Stiffness , Humans , Female , Citrulline/pharmacology , Blood Pressure , Pulse Wave Analysis , Postmenopause , Nitric Oxide , Hypertension/drug therapy , Arginine/pharmacology , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL